Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area.
نویسندگان
چکیده
We investigate dual concentric core and microstructure fiber geometries for dispersion compensation. Dispersion values as large as -59 000 ps/(nm km) are achieved, over a broad wavelength range with full width at half maximum exceeding 100 nm. The trade-off between large dispersion and mode area is studied. Geometries with an effective mode area of 30 microm2 and dispersion -19 000 ps/(nm km) and 80 microm2 with -1600 ps/(nm km) are proposed.
منابع مشابه
Large-effective-area dispersion-compensating fiber design based on dual-core microstructure.
We present a microstructure-based dual-core dispersion-compensating fiber (DCF) design for dispersion compensation in long-haul optical communication links. The design has been conceptualized by combining the all-solid dual-core DCF and dispersion-compensating photonic crystal fiber. The fiber design has been analyzed numerically by using a full vectorial finite difference time domain method. W...
متن کاملDesigning a dual-core photonic crystal fiber coupler by means of microfluidic infiltration
We report the results of our study on the role of microfluidic infiltration technique in improving the coupling characteristics of dual-core photonic crystal fiber (PCF) couplers. Using the finite element method (FEM), we evaluate the effective mode area, dispersion and coupling parameters of an infiltrated dual-core PCF. We use these parameters to design a compact and reconfigurable coupler by...
متن کاملChromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation.
Chromatic dispersion profile of dual-concentric-core photonic crystal fibers is optimized for broadband dispersion compensation of single mode fibers (SMFs) by using genetic algorithm incorporated with full-vector finite-element method. From the numerical results presented here, it is found that by increasing the distance between central core and outer ring core, larger negative dispersion coef...
متن کاملAnalysis and Optimization of Photonic Crystal Components for Optical Telecommunications
Photonic crystals are periodic dielectric structures where the period is of the same order of magnitude than the wavelength of light. As a result of interference, there exist band gaps for light, i.e., light of certain range of frequencies is not allowed to exist inside the photonic crystal, which can be used to control and confine light. In this thesis, photonic crystals were studied with comp...
متن کاملWideband Dispersion Compensation in Hexagonal Lattice Photonic Crystal Fiber
In this paper, a new structure is provided for the dispersion compensating photonic crystal fibers in order to broaden the chromatic dispersion and increase the dispersion compensating capability in a wide wavelength range. In the structure, putting elliptical holes in the first ring of the inner core clad of a dispersion compensating fiber of the hexagonal lattice, increases the wavelength ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2005